

SAS Users Group International Conference: Paper 272-28

Known Nonsense
Using Known Non-Information to Aid Model and Variable Selection

Carl Formoso, Division of Child Support, Olympia, WA

Abstract
Model selection in regression analyses can be aided
by the addition of known non-information. A
randomly generated variable is known to have no
explanatory or predictive power for any outcome of
interest. When the random variable is selected as the
‘best’ entry for model improvement we can be sure
that the model is not improved, even though usual
measures such as adjusted R square and Mallow’s Cp
may show improvement. When the random variable
remains in the model, later entered variables can
also be considered to not improve the model. We
also demonstrate the generation of randomness
through disordering an existing variable to create a
random variable with the exact values and
distribution of a real variable.

Introduction
In physical sciences a common approach is to use a
known commodity as a reference in determining an
unknown commodity. In statistical analysis there is
often little frame of reference, and no known
relationships between explanatory variables and
outcome variables. However it is easily possible to
create the bottom of the scale by adding a variable
known to have no explanatory or predictive power.
We provide two examples in this paper. The first
uses a variable randomly generated from a uniform
distribution in an explanatory model, and the second
uses a disordered form of an existing variable in a
predictive model.

Using a Randomly Generated Variable
The first example is from the development of an
explanatory resource allocation model, where we are
attempting to find relationships between employee
work activities and agency outcome measures. The
data comes from an automated system which
captures individual work activities and from Federal
Incentive Measures for child support collections. The
analytical data set is created by the code below, with
explanatory variables a4-a22, outcome variables o1-
o4, categories dt (month), fo (field office), emp
(employee number), jc (job class), and sup
(supervisor number), and random variable a3. It is
useful to name the random variable so that when it is
in the model, it will be listed first.

data jc;
infile

'd:\emodel\empfedincvjc.txt';
input

a4-a22
o1-o4
dt fo emp jc sup;

a3=ranuni(0);
run;

Because we are considering models across 10 field
offices, 7 job classes, and 4 outcomes it was
necessary to automate the procedure as much as
possible. For demonstration, the coding example
below is a modified excerpt of the actual method,
which is a macro procedure.

ods listing close;
%let i=2;
%let j=7;

proc reg data=jc;
model o&i=a3-a22/
selection=rsquare

best=1
 adjrsq cp mse sse;

where jc=&j;
ods output

SubsetSelSummary= tmpJ&j.O&i;
run;

PROC REG® with the model options specified will
try all one-variable models, all two-variable models,
and so on. The output would usually list all models
in order of the best model for each number of
variables, but the “best=1” option simply selects the
first record, i.e., the best model, for each number of
variables.

Appendix Table 1 shows an example of results where
the random variable enters the model and stays in
while adjusted R square and Cp continue to show
improvement.

In this example a3 was the “best” third variable to
enter the model even though the minimum value of
Cp is for a 5 variable model. Since we know a3
contains no information relating to outcome o2,
there must also be very little information relating to
o2 in variable a20, a15, or any of the later entered
variables because a3 remains in the model – no
subsequent variable is able to replace it. The best
model appears to be o2= a7 a21.

It would be easy to automate finding a3 by a simple
statement such as:

if substr(varsinmodel,1,2)= “a3” then

But there are also situations, demonstrated in
Appendix Table 2, where the random variable enters
the model, then is removed, and finally enters to
stay.

Here a3 is part of the 5 variable model and the 6
variable model, but is removed from the 7 variable
model as are a8 and a17. The 12 variable model once
again enters a3 and it is part of all subsequent
models. Multicollinearity or interactive effects may

April 2003 Page 1

have caused this behavior. There are two possible
model choices here, the 4 variable model before a3
enters or the 10 variable model where Cp is minimal.
We chose the 4 variable model.

Creating Randomness by Disordering
While creating a random variable from a standard
distribution can be useful there are situations where
it may be better to create a random variable which
matches the values and distribution of an actual
variable. We used the techniques described here in
selecting input variables for a neural network
predictive model for changes in child support
arrearage debt. Starting with over one hundred
candidate variables we were able to select ten
variables with consistent predictive power, where no
variable added to the set significantly increased
predictive power. The core of the selection procedure
measures the information gain of a variable against a
scrambled version of the same variable. Because of
the complexity of the full procedure, we present a
simplified version here for demonstration.

The code below will create a disordered version of an
input variable. The data set pickS contains the
ordered variable T95Q3 and the scrambled version
T95Q3S, both with exactly the same values and
distribution.

data t95;
set pick;
keep T95q3S ro;
T95Q3S=T95q3;
ro=rannor(0);

proc sort;
by ro;

data pickS;
set pick;
set t95;
drop ro;

run;

Information content is related to the number of
binary questions required to obtain the desired
answer. When outcomes are not equally likely the
following equation applies:

I = -Σ N i log2 fi

where I is information content, - log2 fi measures
the ‘bits’ of information for each correct prediction
of outcome i, with N i the number of correct
predictions for outcome i.

The outcome frequencies, fi , are obtained from the
known outcomes, for example using the code below.

proc sql;
select
-log2(sum(miss)/count(ssn))

into: mbit from pick;
select
-log2(sum(up)/count(ssn))

into: ubit from pick;
select
-log2(sum(down)/count(ssn))

into: dbit from pick;
select
-log2(sum(same)/count(ssn))

into: sbit from pick;

In the code below we use a multinomial linear model
for demonstration – essentially a neural network
with no hidden layer.

proc glm data=pick ;
model miss up down same =

durp durn dur0;
output out=prd

p=pm pu pd ps;
run;

The predictions are converted to dichotomous
outputs in the code shown below.

data compare;
set prd;
keep miss up down same

m0 u0 d0 s0;
mx=max(pm,pu,pd,ps);
m0=mx=pm;
u0=mx=pu;
d0=mx=pd;
s0=mx=ps;

run;

Finally the code below allows an estimation of the
information content extracted from the input
variables.

proc sql;
select mi+ui+di+si as info
from (select

sum(m0=1 and miss=1)*&mbit as mi,
sum(u0=1 and up=1)*&ubit as ui,
sum(d0=1 and down=1)*&dbit as di,
sum(s0=1 and same=1)*&sbit as si
from compare);

We next use the above methods to look at the
information contained in the three most powerful
predictors, and ask about the information contained
in three examples of a fourth predictor.

Our basic predictors are durations representing
patterns of past debt behavior (see PROC GLM®
code above) and in this simple model 199,769 bits of
information for predicting debt are extracted from
these three variables (see Appendix Table 3).

Using the debt level in the “current” quarter as a
fourth predictor gains additional information, but

April 2003 Page 2

the scrambled version adds no information. This
demonstrates both that T95Q3 has predictive power
and that scrambling removes all information from
T95Q3 (see Appendix Table 3).

Scrambling works best for continuous variables such
as T95Q3, but can also work for dichotomous
variables. Using the gender of the debtor (NCPgen)
as a fourth predictor gains additional information,
with the scrambled version once again adding no
information (see Appendix Table 3).

However, with another dichotomous variable
(Typem, an indicator for a rare case type) there is
not much information gained and the scrambled
version appears to retain some information (see
Appendix Table 3).

Typem is strongly skewed with only 0.6% valued 1.
This already tells us that it’s unlikely to contain very
much information. But scrambling will not have
much effect on Typem because a zero-valued
observation has a very high probability of remaining
zero-valued after the scrambling. NCPgen has 12.3%
valued 1 which is apparently enough so that
scrambling completely removes the information
contained in NCPgen.

This approach also helps resolve the use of
correlated variables. While NCPgen is shown to
contain predictive information in the example
presented above, it is not part of the final predictive
model. NCPgen shows little information gain when
other more powerful predictors, not discussed here,
are in the model. The other variables are correlated
with NCPgen and NCPgen adds no new information.
However the final model does contain two strongly
correlated variables. There is an overlap of
information contained in the two variables, but each
variable contributes predictive information not
contained in the other.

Author Contact Information

Carl Formoso, Ph.D.
Research and Development Manager
Division of Child Support
PO Box 9162
Olympia WA 98507
(360)664-5090
cformoso@dshs.wa.gov

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration. Other brand and product names are
trademarks of their respective companies.

April 2003 Page 3

mailto:cformoso@dshs.wa.gov

Appendix

Table 1: Random Variable which Remains in Model

j Dependent NumInModel RSquare Adjrsq Cp VarsInModel
7 o2 1 0.320 0.312 20.040 a18
7 o2 2 0.410 0.396 7.739 a7 a21
7 o2 3 0.449 0.430 3.462 a3 a7 a21
7 o2 4 0.477 0.453 1.091 a3 a7 a20 a21
7 o2 5 0.496 0.466 0.065 a3 a7 a15 a20 a21
7 o2 6 0.506 0.472 0.363 a3 a6 a7 a18 a20 a21
7 o2 7 0.515 0.474 1.077 a3 a6 a7 a18 a20 a21 a22
7 o2 8 0.526 0.481 1.212 a3 a5 a6 a7 a18 a20 a21 a22

List truncated at 8 variable model

Table 2: Random Variable which Enters Model, Leaves, and Re-enters

j Dependent NumInModel RSquare Adjrsq Cp VarsInModel
3 o2 1 0.8 52101 0.849257 59.30426 a22
3 o2 2 0.8 97091 0.893055 28.05485 a21 a22
3 o2 3 0.9 11818 0.906527 19.17092 a8 a21 a22
3 o2 4 0.9 20446 0.913952 14.79398 a8 a17 a21 a22
3 o2 5 0.9 24756 0.916918 13.60888 a3 a8 a17 a21 a22
3 o2 6 0.9 28083 0.918902 13.15043 a3 a8 a9 a17 a21 a22
3 o2 7 0.9 34423 0.924443 10.46483 a4 a6 a7 a9 a12 a21 a22
3 o2 8 0.9 39837 0.929141 8.463352 a4 a6 a7 a9 a12 a18 a21 a2 2
3 o2 9 0.94378 0.932281 7.549034 a4 a6 a9 a10 a12 a16 a17 a21 a2 2
3 o2 10 0.9 47564 0.935369 6.753033 a4 a6 a7 a9 a10 a12 a16 a1 7 a21 a22
3 o2 11 0.9 48936 0.935562 7.738769 a4 a6 a7 a9 a10 a12 a14 a1 6 a17 a21 a22
3 o2 12 0.9 50794 0.936392 8.3658 a3 a4 a6 a9 a10 a12 a14 a1 6 a17 a20 a21 a22

List truncated at 12 variable model

Table 3: Information Gain of Ordered and Disordered Variables

X1 X2 X3 X4 Information, bits
durp durn dur0 - 199,769
durp durn dur0 T95Q3 201,456
durp durn dur0 T95Q3S 199,769
durp durn dur0 NCPgen 202,752
durp durn dur0 NCPgenS 199,769
durp durn dur0 Typem 199,922
durp durn dur0 TypemS 199,781

April 2003 Page 4

